
Online Optimization  
for Power Networks 

 

Changhong Zhao 
Lingwen Gan 
Steven Low 

EE, CMS, Caltech 

 

January 2016 

 

Enrique Mallada 
 

ME, Johns Hopkins 
 

 



Key message 

Large network of DERs 
n  Real-time optimization at scale 

 

Online optimization (feedback control) 
n  Network solves hard problems in real time for 

free 
n  Exploit it for our optimization/control 
n  Naturally adapts to evolving network 

conditions 
 

Examples 
n  Slow timescale: OPF 
n  Fast timescale: frequency control 

 

 
 
 



Outline 

Optimal power flow 
n  DistFlow model and ACOPF 
n  Online algorithm 
n  Analysis and simulations 

 

Load-side frequency control 
n  Dynamic model & design approach 
n  Distributed online algorithm 
n  Analysis and simulations 
n  Details 
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set. This bound suggests that any local minimum is almost as
good as any strictly feasible point.

We present in Section VI several refinements and extensions
to the basic gradient algorithm. For example, due to the
implicit power flow solution (1b), the gradient computation
in (1a) requires inverting a certain Jacobian matrix. This is
inefficient for large networks in terms of both computational
effort and communication requirement. We describe how to
exploit the tree topology of the network to iteratively compute
the gradient in (1a) without the need for matrix inversion. To
further reduce the computational effort, we describe how to use
linearized power flow equations to derive approximate gradi-
ents that avoids both matrix inversion and iterative calculation.
These two methods greatly reduce the computational effort in
each iteration of (1a), but does not directly address commu-
nication requirement. In [19] these algorithms are extended
to their distributed versions that require communication only
between neighboring buses.

While we discuss our algorithms mostly in the context
of a single-phase network for simplicity of exposition, most
distribution systems are multiphase unbalanced [24], [10],
[21]. We provide a sketch on how these algorithms can be
extended to multiphase unbalanced radial networks.

Finally we present in Section VII numerical experiments on
22 test networks with 42 buses to 1,990 buses. They suggest
that while semidefinite relaxation of OPF [25], [26] is able
to compute globally optimal solutions, it takes a much longer
time. In comparison, the algorithm developed in this paper
takes a much shorter time and is able to obtain a close-to-
optimal solution. Specifically, for all our test networks, the
difference in objective values is below 10

�5 between these
two methods but the speedup is over 70x for large networks.
It is therefore promising to further develop the algorithms in
this paper for real-time applications.

We conclude in Section VIII that it seems promising to
further develop the algorithms in this paper for real-time
applications. A key challenge to overcome is to minimize the
measurement and communication requirements so that these
algorithms can be implemented in real time by a large network
of distributed energy resources, building on the ideas in [19].

II. PROBLEM FORMULATION

A. Model

Consider a distribution network modeled as a directed (and
connected) tree graph (N+, E) where N+

:= {0}[N , N :=

{1, . . . , n}, and E ✓ N+⇥N+. We will refer to each i 2 N+

as a “bus” or “node” and each (i, j) 2 E as a “line” or “link”.
Let m := |E| = n be the number of lines in E. Let bus 0
be the root of the tree. For convenience only, we assume the
graph is oriented such that each line (i, j) 2 E points away
from the root. We may use (i, j) or j ! k interchangeably
to denote a line. For each (i, j) 2 E, let zij := rij + ixij

were rij > 0 and xij > 0 are the line resistance and reactance
respectively.

For each bus i 2 N+, let Vi be the complex voltage at
bus i and vi = |Vi|2 the square of its magnitude, e.g., if the
voltage is Vi = 1.05\120� per unit, then vi = 1.052. Bus 0 is

the slack or substation bus and we assume as customary that
V
0

= 1\0� pu. Let si = pi + iqi be the net complex power
injection at bus i with pi and qi as the real and reactive power
injections respectively. Let Pi denote the unique path from bus
0 to bus i. Since the network is radial (has a tree topology),
the path Pi is well-defined.

For each line (i, j) 2 E, let Iij be the complex current
and `ij = |Iij |2 its squared magnitude, e.g., if the current is
Iij = 0.5\10�, then `ij = 0.52. Let Sij = Pij + iQij be the
sending-end complex power from buses i to j with Pij and
Qij as the real and reactive power respectively.

We will mainly be using branch flow models in real domain,
so we will abuse notation to use si to denote either the complex
number pi + iqi or the real pair (pi, qi) depending on the
context; similarly for other variables zij , Vi, Sij , Iij . Some of
the notations are summarized in Figure 1.

0 i j 

Pi 

si 

Sij, lij 

Fig. 1. Some of the notations.

Let x := (pi, qi, i 2 N) 2 R2n denote the buse injections1

and y := (p
0

, q
0

, vi, i 2 N ;Pij , Qij , `ij , (i, j) 2 E) 2
R3m+n+2. These variables, together with v

0

, satisfy the power
flow equations:

X

k: j!k

Pjk = Pij � rij`ij + pj , j 2 N+ (2a)

X

k: j!k

Qjk = Qij � xij`ij + qj , j 2 N+ (2b)

vi � vj = 2(rijPij + xijQij) � |zij |2`ij , i ! j (2c)
vi`ij = P 2

ij + Q2

ij , i ! j (2d)

where i in (2a) and (2b) is the unique bus between bus 0
and bus j. Note that the number 2(m + n + 1) = 4n + 2

of equations is the same as the number of variables in y. The
equations (2), called the DistFlow equations, are first proposed
in [1], [2] and are valid only for radial networks (see [14] for
the generalization to mesh networks). Discrete devices like
tap-changers and circuit breakers are not modeled.

1Even though x is also used to denote line reactances, the meaning should
be clear from the context.

x := p,q,v,P,  Q,  ℓ( )
  = s,v,S,  ℓ( )

lin
ea

r 

quadratic 

DistFlow equations (radial nk)  
Baran & Wu, 1989 



Branch flow model 
Branch flow model Bus injection model 
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Branch flow model Bus injection model 
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Cycle condition 

A relaxed solution     satisfies the cycle 
condition if 
 
 

incidence matrix; 
depends on topology 

∃θ    s.t.    Bθ = β(x)      mod 2π

x

x := (S,,v, s)

β jk (x) :=∠ vj − z jk
HSjk( )



Branch flow model 
Branch flow model Bus injection model 
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[Farivar & Low 2013 TPS 
Bose et al 2012 Allerton] 

Theorem:  BIM = BFM 

x := (s,v,S,ℓ)∈ R3(m+n+1)



Branch flow model 

•  BFM and BIM are equivalent (nonlinear bijection) 

•  … but some results are easier to formulate or 
  prove in one than the other 

•  BFM is much more numerically stable  

•  BFM is useful for radial networks 
•  Extremely efficient computation (BFS) 
•  Much better linearization 
•  Compact extension to multiphase unbalanced nk 



Branch flow model 
Branch flow model Bus injection model 
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SOCP relaxation 
Branch flow model Bus injection model 
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SOCP relaxation of OPF 

OPF:    min
x∈X

 f x( )

SOCP:    min
x∈X+

 f x( )



Sufficient conds for exact relaxation 
IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 2014 2

type condition model reference remark
A power injections BIM, BFM [25], [26], [27], [28], [29]

[30], [16], [17]
B voltage magnitudes BFM [31], [32], [33], [34] allows general injection region
C voltage angles BIM [35], [36] makes use of branch power flows

TABLE I: Sufficient conditions for radial (tree) networks.

network condition reference remark
with phase shifters type A, B, C [17, Part II], [37] equivalent to radial networks

direct current type A [17, Part I], [19], [38] assumes nonnegative voltages
type B [39], [40] assumes nonnegative voltages

TABLE II: Sufficient conditions for mesh networks

when the cost function is convex then exactness of the SOCP
relaxation implies uniqueness of the optimal solution for
radial networks. Again the equivalence of BIM and BFM
implies that any of the three types of sufficient conditions
guarantees that, for radial networks, there is a unique optimal
solution and it can be computed by solving an SOCP. Since
the SDP and chordal relaxations are equivalent to the SOCP
relaxation for radial networks [23], [24], these results apply
to all three types of relaxations. Empirical evidences suggest
some of these conditions are likely satisfied in practice. This
is important as most power distribution systems are radial.

These conditions are insufficient for general mesh net-
works because they cannot guarantee that an optimal solution
of a relaxation satisfies the cycle condition discussed in [24].
In Section IV we show that these conditions are however
sufficient for mesh networks that have tunable phase shifters
at strategic locations. They are also sufficient for direct
current (dc) mesh networks where all variables are in the
real rather than complex domain.

Counterexamples are known where SDP relaxation is not
exact, especially for AC mesh networks [41], [42]. We
conclude in Section V with a discussion on three recent
approaches for global optimization of OPF when the semidef-
inite relaxations discussed in this tutorial fail.

All proofs are omitted and can be found in the original
papers or the arXiv version of this tutorial.

II. OPF AND ITS RELAXATIONS

We adopt the notations and definitions from Part I of this
paper. In this section we summarize the OPF problems and
their relaxations developed there; see [24] for details.

We use in this paper a strong sense of “exactness” that
requires that the optimal solution sets of the OPF problem
and its relaxation be equivalent. This implies that an optimal
solution of the nonconvex OPF problem can be recovered
from every optimal solution of its relaxation. This is impor-
tant because it ensures any algorithm that solves an exact

relaxation always produces a globally optimal solution to
the OPF problem. Indeed interior point methods for solving
semidefinite programs tend to produce a solution matrix with
a maximum rank [43], so can miss a rank-1 solution if the
relaxation has non-rank-1 solutions as well. It can be difficult
to recover an optimal solution of OPF from such a non-
rank-1 solution, and our definition of exactness avoids this
complication. It is however more stringent than necessary
under the sufficient conditions of this tutorial; see Section
II-C.

A. Bus injection model
The BIM adopts an undirected graph G 1 and can be

formulated in terms of just the complex voltage vector
V 2 Cn+1. The feasible set is described by the following
constraints:

s j  Â
k:( j,k)2E

yH
jk Vj(V H

j �V H
k )  s j, j 2 N+ (1a)

v j  |Vj|2  v j, j 2 N+ (1b)

where s j,s j,v j,v j, possibly ±•± i•, are given bounds on
power injections and voltage magnitudes. Note that the vector
V includes V0 which is assumed given (v0 = v0 and \V0 = 0�)
unless otherwise specified. The problem of interest is:
OPF:

min
V2Cn+1

C(V ) s.t. V satisfies (1) (2)

For relaxations consider the partial matrix WG defined on
the network graph G that satisfies

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (3a)

v j  [WG] j j  v j, j 2 N+ (3b)

1We will use “bus” and “node” interchangeably and “line” and “link”
interchangeably.

Tutorial: Convex relaxation of OPF, IEEE Trans. Control of Network Systems, 2014 

For mesh networks, see recent works of Andy Sun, Pascal van Hentenryck on 
relaxation of cycle condition 
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SOCP relaxation of OPF 

OPF:    min
x∈X

 f x( )

SOCP:    min
x∈X+

 f x( )

But all these algorithms are offline … 
… unsuitable for real-time optimization of 
     network of distributed energy resources 
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B. Optimal power flow (OPF)
The OPF problem that we seek to solve is:

min

nX

i=0

aip
2

i + bipi (3a)

over x := (pi, qi, i 2 N)

y := (p
0

, q
0

, vi, i 2 N ;Pij , Qij , `ij , (i, j) 2 E)

s.t. (2)
vi  vi  vi, i 2 N (3b)
p
i
 pi  pi, q

i
 qi  qi, i 2 N (3c)

The objective function (3a) is assumed to be separable,
quadratic, and purely a function of real power injections p.
Equation (3b) represents the voltage constraints, and (3c)
represents the power injection constraints. If there is no bound
on an injection xj then we set xj = �1 or/and xj = 1. On
the other hand if an injection xj is fixed (e.g. a constant-power
load) then we set xj = xj to the specified value.

OPF as defined (3) is a simplified version that ignores other
important constraints such as line limits, security constraints,
stability constraints, and chance constraints. Some of these
(e.g., including shunt elements or line limits on `ij) can be
incorporated without much change to the results in this paper.

III. SOLUTION STRATEGY

We are motivated by the need to optimize the operation
of a large network of distributed energy resources in the
future, such as distributed wind and solar generations, electric
vehicles, smart buildings, smart appliances, storage devices,
and power electronics. We model these controllable devices
by injections x := (pi, qi, i 2 N).2 We will develop a gradient
projection algorithm that iteratively solves an approximate
version of the OPF problem (3) as follows: at each iteration
t,

1) the algorithm applies the current iterate x(t) to the
network;

2) the network automatically computes the dependent vari-
ables y(t) according to the power flow equations (2);

3) the algorithm computes x(t + 1) based on (x(t), y(t))
using a gradient projection algorithm; goto 1 until con-
verge.

Hence we explicitly exploit the law of physics, modeled by
power flow equations (2), to carry out part of the gradient
projection algorithm to solve approximately our OPF problem.
The key advantage of this approach is that, by applying
intermediate iterates (x(t), y(t)) to the network at each t, it
can be used in real time for continuous feedback control to
track evolving network conditions. This is in stark contrast to
most traditional OPF algorithms where intermediate iterates
(x(t), y(t)) do not satisfy power flow equations and therefore
cannot be implemented until the algorithms have converged.
We will comment on the communication requirements to
implement this strategy in Section VI.

We now describe the approximate OPF problem that we
solve, in two steps.

2An injection that is constant and not controllable is modeled by setting
p

i

= p

i

and/or q
i

= q

i

.

A. Injection optimization

We first transform (3) into one where the optimization
variable is only x. To this end, let

X := { (pi, qi) | p
i
 pi  pi, q

i
 qi  qi, i 2 N } (4)

Write the power flow equations (2), in terms of a continuously
differentiable function F : X ! R2(m+n+1), as:

F (x, y) = 0 (5)

We make the following assumption throughout the paper:
A1: Given any x̃ 2 X (and v

0

), there is a unique ỹ that solves
the power flow equation (5) and satisfies the voltage
constraints (3b). Moreover the Jacobian matrix @yF (x̃, ỹ)
at (x̃, ỹ) is nonsingular.

A1 is widely believed to hold in practice for radial networks
and a rigorous proof for some special cases are provided in
[9].

Equation (5) hence defines implicitly a function y = y(x)
over X:

p
0

:= p
0

(x), q
0

:= q
0

(x);

vi := vi(x), i 2 N

Pij := Pij(x), Qij := Qij(x), `ij = `ij(x), i ! j

such that F (x, y(x)) = 0. Then the OPF problem (3) can be
written in terms of x:

min a
0

p2
0

(x) + b
0

p
0

(x) +
nX

i=1

(aip
2

i + bipi) (6a)

over x := (pi, qi, i 2 N) 2 X (6b)
s.t. vi  vi(x)  vi, i 2 N (6c)

where X is defined in (4). While (6) is equivalent to (3),
(6) has much fewer optimization variables and is therefore
potentially more efficient to compute. Note however that while
(3b) is linear in vi, (6c) is generally nonlinear nonlinear in x.

B. Modified OPF

The nonlinear voltage constraints (6c) couple the variables
x = (pi, qi, i 2 N). To further simplify the feasible set to
facilitate a distributed algorithm (see [19]) where each bus i
updates its own (pi, qi) locally, we replace the hard constraints
(6c) by a log-barrier function in the objective that prevents the
voltages from violating (6c):

L(x;µ) := a
0

p2
0

(x) + b
0

p
0

(x) +
nX

i=1

(aip
2

i + bipi)

� µ
nX

i=1

ln(vi(x) � vi) � µ
nX

i=1

ln(vi � vi(x))

(7)

where µ = (µ, µ) > 0 componentwise. Since

lim

t#vi

�µ ln(t � vi) = 1, lim

t"vi

�µ ln(vi � t) = 1, i 2 N

F(x, y) = 0 BFM 

controllable devices 

uncontrollable state 



OPF 

3

B. Optimal power flow (OPF)
The OPF problem that we seek to solve is:

min

nX

i=0

aip
2

i + bipi (3a)

over x := (pi, qi, i 2 N)

y := (p
0

, q
0

, vi, i 2 N ;Pij , Qij , `ij , (i, j) 2 E)

s.t. (2)
vi  vi  vi, i 2 N (3b)
p
i
 pi  pi, q

i
 qi  qi, i 2 N (3c)

The objective function (3a) is assumed to be separable,
quadratic, and purely a function of real power injections p.
Equation (3b) represents the voltage constraints, and (3c)
represents the power injection constraints. If there is no bound
on an injection xj then we set xj = �1 or/and xj = 1. On
the other hand if an injection xj is fixed (e.g. a constant-power
load) then we set xj = xj to the specified value.

OPF as defined (3) is a simplified version that ignores other
important constraints such as line limits, security constraints,
stability constraints, and chance constraints. Some of these
(e.g., including shunt elements or line limits on `ij) can be
incorporated without much change to the results in this paper.

III. SOLUTION STRATEGY

We are motivated by the need to optimize the operation
of a large network of distributed energy resources in the
future, such as distributed wind and solar generations, electric
vehicles, smart buildings, smart appliances, storage devices,
and power electronics. We model these controllable devices
by injections x := (pi, qi, i 2 N).2 We will develop a gradient
projection algorithm that iteratively solves an approximate
version of the OPF problem (3) as follows: at each iteration
t,

1) the algorithm applies the current iterate x(t) to the
network;

2) the network automatically computes the dependent vari-
ables y(t) according to the power flow equations (2);

3) the algorithm computes x(t + 1) based on (x(t), y(t))
using a gradient projection algorithm; goto 1 until con-
verge.

Hence we explicitly exploit the law of physics, modeled by
power flow equations (2), to carry out part of the gradient
projection algorithm to solve approximately our OPF problem.
The key advantage of this approach is that, by applying
intermediate iterates (x(t), y(t)) to the network at each t, it
can be used in real time for continuous feedback control to
track evolving network conditions. This is in stark contrast to
most traditional OPF algorithms where intermediate iterates
(x(t), y(t)) do not satisfy power flow equations and therefore
cannot be implemented until the algorithms have converged.
We will comment on the communication requirements to
implement this strategy in Section VI.

We now describe the approximate OPF problem that we
solve, in two steps.

2An injection that is constant and not controllable is modeled by setting
p

i

= p

i

and/or q
i

= q

i

.
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We first transform (3) into one where the optimization
variable is only x. To this end, let
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Write the power flow equations (2), in terms of a continuously
differentiable function F : X ! R2(m+n+1), as:

F (x, y) = 0 (5)

We make the following assumption throughout the paper:
A1: Given any x̃ 2 X (and v

0

), there is a unique ỹ that solves
the power flow equation (5) and satisfies the voltage
constraints (3b). Moreover the Jacobian matrix @yF (x̃, ỹ)
at (x̃, ỹ) is nonsingular.

A1 is widely believed to hold in practice for radial networks
and a rigorous proof for some special cases are provided in
[9].

Equation (5) hence defines implicitly a function y = y(x)
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where X is defined in (4). While (6) is equivalent to (3),
(6) has much fewer optimization variables and is therefore
potentially more efficient to compute. Note however that while
(3b) is linear in vi, (6c) is generally nonlinear nonlinear in x.

B. Modified OPF

The nonlinear voltage constraints (6c) couple the variables
x = (pi, qi, i 2 N). To further simplify the feasible set to
facilitate a distributed algorithm (see [19]) where each bus i
updates its own (pi, qi) locally, we replace the hard constraints
(6c) by a log-barrier function in the objective that prevents the
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The objective function (3a) is assumed to be separable,
quadratic, and purely a function of real power injections p.
Equation (3b) represents the voltage constraints, and (3c)
represents the power injection constraints. If there is no bound
on an injection xj then we set xj = �1 or/and xj = 1. On
the other hand if an injection xj is fixed (e.g. a constant-power
load) then we set xj = xj to the specified value.

OPF as defined (3) is a simplified version that ignores other
important constraints such as line limits, security constraints,
stability constraints, and chance constraints. Some of these
(e.g., including shunt elements or line limits on `ij) can be
incorporated without much change to the results in this paper.

III. SOLUTION STRATEGY

We are motivated by the need to optimize the operation
of a large network of distributed energy resources in the
future, such as distributed wind and solar generations, electric
vehicles, smart buildings, smart appliances, storage devices,
and power electronics. We model these controllable devices
by injections x := (pi, qi, i 2 N).2 We will develop a gradient
projection algorithm that iteratively solves an approximate
version of the OPF problem (3) as follows: at each iteration
t,

1) the algorithm applies the current iterate x(t) to the
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2) the network automatically computes the dependent vari-
ables y(t) according to the power flow equations (2);

3) the algorithm computes x(t + 1) based on (x(t), y(t))
using a gradient projection algorithm; goto 1 until con-
verge.

Hence we explicitly exploit the law of physics, modeled by
power flow equations (2), to carry out part of the gradient
projection algorithm to solve approximately our OPF problem.
The key advantage of this approach is that, by applying
intermediate iterates (x(t), y(t)) to the network at each t, it
can be used in real time for continuous feedback control to
track evolving network conditions. This is in stark contrast to
most traditional OPF algorithms where intermediate iterates
(x(t), y(t)) do not satisfy power flow equations and therefore
cannot be implemented until the algorithms have converged.
We will comment on the communication requirements to
implement this strategy in Section VI.
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power flow equations (2), to carry out part of the gradient
projection algorithm to solve approximately our OPF problem.
The key advantage of this approach is that, by applying
intermediate iterates (x(t), y(t)) to the network at each t, it
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most traditional OPF algorithms where intermediate iterates
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Results 
1.  Local optimality 
2.  Global optimality 
3.  Suboptimality bound [Gan & Low 2016 JSAC] 



Local optimality 
n  x(t) converges to set of local optima 
n  if #local optima is finite, x(t) converges 

 
 



Global optimality 

A := x ∈ X  :  v(x) ≤ akv + bk v{ }

Assume:  p0 (x)  convex over  X
                vk (x)  concave over  X

Theorem 
 

If all local optima are in A then 

n  x(t) converges to the set of global optima 

n  x(t) itself converges a global optimum 



Global optimality 

A := x ∈ X  :  v(x) ≤ akv + bk v{ }

Assume:  p0 (x)  convex over  X
                vk (x)  concave over  X

Theorem 
 

n    

 
n  If SOCP is exact over X, then assumption holds  

can choose ak,bk( )  s.t.  
A→  original feasible set



Suboptimality gap 

n  Informally, a local minimum is almost as good 
 as any strictly interior feasible point 

≈ 0L x*( )   −   L x̂( )        ≤    ρ

local  
optimum 

any original 
feasible pt 

slightly away 
from boundary 
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TABLE I
OBJECTIVE VALUES AND CPU TIMES OF CVX AND IPM

# bus CVX IPM error speedupobj time(s) obj time(s)
42 10.4585 6.5267 10.4585 0.2679 -0.0e-7 24.36
56 34.8989 7.1077 34.8989 0.3924 +0.2e-7 18.11
111 0.0751 11.3793 0.0751 0.8529 +5.4e-6 13.34
190 0.1394 20.2745 0.1394 1.9968 +3.3e-6 10.15
290 0.2817 23.8817 0.2817 4.3564 +1.1e-7 5.48
390 0.4292 29.8620 0.4292 2.9405 +5.4e-7 10.16
490 0.5526 36.3591 0.5526 3.0072 +2.9e-7 12.09
590 0.7035 43.6932 0.7035 4.4655 +2.4e-7 9.78
690 0.8546 51.9830 0.8546 3.2247 +0.7e-7 16.12
790 0.9975 62.3654 0.9975 2.6228 +0.7e-7 23.78
890 1.1685 67.7256 1.1685 2.0507 +0.8e-7 33.03
990 1.3930 74.8522 1.3930 2.7747 +1.0e-7 26.98

1091 1.5869 83.2236 1.5869 1.0869 +1.2e-7 76.57
1190 1.8123 92.4484 1.8123 1.2121 +1.4e-7 76.27
1290 2.0134 101.0380 2.0134 1.3525 +1.6e-7 74.70
1390 2.2007 111.0839 2.2007 1.4883 +1.7e-7 74.64
1490 2.4523 122.1819 2.4523 1.6372 +1.9e-7 74.83
1590 2.6477 157.8238 2.6477 1.8021 +2.0e-7 87.58
1690 2.8441 147.6862 2.8441 1.9166 +2.1e-7 77.06
1790 3.0495 152.6081 3.0495 2.0603 +2.1e-7 74.07
1890 3.8555 160.4689 3.8555 2.1963 +1.9e-7 73.06
1990 4.1424 171.8137 4.1424 2.3586 +1.9e-7 72.84

VIII. CONCLUSIONS

We have proposed an online algorithm for solving OPF
on radial networks where the controllable devices continu-
ously interact with the network that implicitly computes a
power flow solution given a control action. Collectively the
controllable devices and the network implement a gradient
projection algorithm for the OPF problem in real time. The
key feature that enables this approach is that the intermediate
iterates always satisfy power flow equations and operational
constraints. We have proved the convergence and optimality
of the proposed algorithm and have bounded the suboptimality
gap of any local minimum.

To greatly reduce the gradient computation in each iteration,
we have derive approximate gradient based on linearized
power flow equations. We have also outlined how these algo-
rithms can be extended to multiphase unbalanced networks.
Finally the evaluation of our algorithm on test networks,
ranging from 42-bus to 1990-bus, shows more than 70x
speedup over a semidefinite relaxation method with negligible
difference in objective values.

It is therefore promising to further develop the algorithms
in this paper for real-time applications. A key challenge to
overcome is to minimize the measurement and communication
requirements so that these algorithms can be implemented in
real time by a large network of distributed energy resources,
building on the ideas in [19].
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Abstract— This paper addresses design considerations for 

frequency responsive Grid FriendlyTM appliances (FR-GFAs), 
which can turn on/off based on frequency signals and make 
selective low-frequency load shedding possible at appliance level.  
FR-GFAs can also be treated as spinning reserve to maintain a 
load-to-generation balance under power system normal operation 
states.  The paper first presents a statistical analysis on the 
frequency data collected in 2003 in Western Electricity 
Coordinating Council (WECC) systems. Using these frequency 
data as an input, the triggering frequency and duration of an FR-
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load capacity is residential (Fig. 1a).  The residential load can 
be categorized into GFA and non-GFA loads. Based on a 
residential energy consumption survey (Fig. 1b) conducted in 
1997, 61% of residential loads are GFA compatible. If all 
GFA resources were used, the regulation ability of load would 
exceed the operating reserve (13% of peak load capacity) 
provided by generators.   
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Fig. 1. (a) Load and reserves on a typical U.S. peak day, (b) Residential load 
components. [4] 

Compared with the spinning reserve provided by 
generators, GFA resources have the advantage of faster 
response time and greater capacity when aggregated at feeder 
level.  However, the GFA resources also have disadvantages, 
such as low individual power load, poor coordination between 
units, and uncertain availabilities caused by consumer comfort 
choices and usages. Another critical issue is the coordination 
between regulation services provided by FR-GFAs and 
generators. Therefore, whether FR-GFAs can achieve similar 
regulation capabilities as generators is a key issue to be 
addressed before one can deploy FR-GFAs widely.   

As a first step to evaluate the FR-GFA performance, a 
research team at Pacific Northwest National Laboratory 
(PNNL) carried out a series of simulations which focused on 
studying the individual FR-GFA performance to obtain basic 
operational statistics under different frequency setting 
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operating reserve:  13% of peak 
total GFA capacity: 18% 

Lu & Hammerstrom (2006), PNNL 

•  Residential load accounts 
     for ~1/3 of peak demand 
•  61% residential appliances 
     are Grid Friendly 



How  

How to design load-side frequency control ? 
 
How does it interact with generator-side 
control ? 
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Network model 
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loads:  

controllable + freq-sensitive 

i : region/control area/balancing authority 
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Pij

Will include generator-side 
control later 



Network model 

Mi ωi  = Pi
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Damping/uncontr loads:  

Controllable loads: 

d̂i = Diωi
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Network model 
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•  swing dynamics 
•  all variables are deviations  
    from nominal 
•  extends to nonlinear power flow 

Mi ωi  = Pi
m − di − d̂i − CieP e

e
∑

Pij = bij ωi −ω j( )               ∀ i→ j



Frequency control 

Suppose the system is in steady state 
 
 
Then: disturbance in gen/load …  

ωi = 0    Pij = 0    ωi = 0

Mi ωi  = Pi
m − di − d̂i − CieP e

e
∑

Pij = bij ωi −ω j( )               ∀ i→ j



Frequency control 

current 
approach 

load-side 
control 

Mi ωi  = Pi
m − di − d̂i − CieP e

e
∑

Pij = bij ωi −ω j( )               ∀ i→ j



Outline 

Network model 
 

Distributed online algorithm 
 

Simulations 
 

Details 
 
 
 
Main references (frequency control):  

 Zhao, Topcu, Li, L, TAC 2014 
 Mallada, Zhao, L, Allerton 2014 
 Zhao et al: CDC 2014, CISS 2015, PSCC 2016 



Load-side controller design 

Mi ωi  = Pi
m − di − d̂i − CieP e

e
∑

Pij = bij ωi −ω j( )               ∀ i→ j

Control goals (while min disutility) 

n  Rebalance power & stabilize frequency 

n  Restore nominal frequency 
n  Restore scheduled inter-area flows 
n  Respect line limits 

 

Zhao, Topcu, Li, Low 
TAC 2014 

Mallada, Zhao, Low  
Allerton, 2014 
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Load-side controller design 

Design control law 
whose equilibrium 

solves: 
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inter-area flows 

line limits 

Control goals (while min disutility) 

n  Rebalance power & stabilize frequency 

n  Restore nominal frequency 
n  Restore scheduled inter-area flows 
n  Respect line limits 

 

load disutility 

freq will emerge as  
Lagrange multiplier 

for power imbalance 



Load-side controller design 

Design control (G, F) s.t. closed-loop system 

n  is stable 
n  has equilibrium that is optimal 
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Load-side controller design 

Idea: exploit system dynamic as part of  
primal-dual algorithm for modified opt 

n  Distributed algorithm 
n  Stability analysis 
n  Control goals in equilibrium 
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Summary: control architecture 

Primary load-side frequency control 
•  completely decentralized 
•  Theorem: stable dynamic, optimal equilibrium 
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The name of the dynamic law (27) comes from the fact that
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫
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This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:
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Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
i

+ !
i

).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �

i

one needs to estimate

Power Network Dynamics
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. . . 0
di(·)

0
. . .

Dynamic Load Control
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Fig. 1: Control architecture derived from OLC
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which is not easy since one cannot separate Pm
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from
Pm

i

�D
i

!
i

when one measure the power injection of a given
bus without knowing D

i

. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),

Zhao, Topcu, Li, Low. TAC 2014 
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V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
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Secondary load-side frequency control 
•  communication with neighbors 
•  Theorem: stable dynamic, optimal equilibrium 
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Summary: control architecture 

With generator-side control, nonlinear power flow 
•  load-side improves both transient & eq 
•  Theorem: stable dynamic, optimal equilibrium 

Zhao, Mallada, Low. CISS 2015 
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫

i

= M�1

i

and
�P

ij

= B
ij

. Therefore, we can interpret the frequency !
i

as
the Lagrange multiplier ⌫

i

.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:

!̇G = M�1

G (Pm
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ˆdG)� CGP ) (31a)

0 = Pm
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and
Dynamic Load Control:

˙� = ⇣� (Pm � d� L
B

v) (32a)

⇡̇ = ⇣⇡
Ä
ˆCD

B

CT v � ˆP
ä

(32b)

⇢̇+ = ⇣⇢
+

⇥
D

B

CT v � ¯P
⇤
+

⇢

+

(32c)

⇢̇� = ⇣⇢
� ⇥

P �D
B

CT v
⇤
+

⇢

� (32d)

v̇ = �v

Ä
L
B

�� CD
B

ˆCT⇡ � CD
B

(⇢+ � ⇢�)
ä

(32e)

d = c0
�1

(! + �) (32f)

Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
i

+ !
i

).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �

i

one needs to estimate

Power Network Dynamics
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. . . 0
di(·)

0
. . .
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Fig. 1: Control architecture derived from OLC

Pm

i

�d
i

which is not easy since one cannot separate Pm

i

from
Pm

i

�D
i

!
i

when one measure the power injection of a given
bus without knowing D

i

. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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VII. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
2, to test our scheme. We assume that the system has two
independent control areas that are connected through lines
(1, 2), (2, 3) and (26, 27). The network parameters as well
as the initial stationary point (pre fault state) were obtained
from the Power System Toolbox [41] data set.

Each bus is assumed to have a controllable load with D
i

=

[�d
max

, d
max

], with d
max

= 1p.u. on a 100MVA base and
disutility function
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tan(
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) =
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arctan(!
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). See
Figure 3 for an illustration of both c
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) and d
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(�
i

).

−1 −0.5 0 0.5 1

0

5

10

15

20

25

di

c
i
(d

i
)

−10 −5 0 5 10
−1

−0.5

0

0.5

1

ω i + λi

d
i
(ω

i
+

λ
i
)

Fig. 3: Disutility c
i

(d
i

) and load function d
i

(!
i

+ �
i

)

Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter
D

i

= 0.2 8i 2 N and �v

i

= ⇣�
i

= ⇣⇡
k

= ⇣⇢
+

e

= ⇣⇢
�

e

= 1,
for all i 2 N , k 2 K and e 2 E . These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing the
mismatch among the load buses. ˆP is obtained from the
starting stationary condition. We initially set ¯P and P so that
they are not binding.

We simulate the OLC-system as well as the swing dynam-
ics (31) without load control (d

i

= 0), after introducing a
perturbation at bus 29 of Pm

29

= �2p.u.. Figures 4 and 5 show
the evolution of the bus frequencies for the uncontrolled swing
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dynamics (a), the OLC system without inter-area constraints
(b), and the OLC with area constraints (c).

It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.
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Now, we illustrate the action of the thermal constraints by
adding a constraint of ¯P

e

= 2.6p.u. and P
e

= �2.6p.u. to
the tie lines between areas. Figure 6 shows the values of
the multipliers �

i

, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and 5c, i.e. without thermal
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V. CASE STUDY

We illustrate the performance of the proposed control
through a simulation of the IEEE New England test system
shown in Fig. 1.

Fig. 1. IEEE New England test system [39].

This system has 10 generators and 39 buses, and a total
load of about 60 per unit (pu) where 1 pu represents 100
MVA. Details about this system including parameter values
can be found in Power System Toolbox [39], which we use
to run the simulation in this section. Compared to the model
(2)–(4), the simulation model is more detailed and realistic,
with transient generator dynamics, excitation and flux decay
dynamics, changes in voltage and reactive power over time,
and lossy transmission lines, et cetera.

The primary frequency control of generator or load j

is designed with cost function c

j

(p

j

) =

Rj

2 (p

j

� p

set
j

)

2,
where p

set
j

is the power injection at the setpoint, an initial
equilibrium point solved from static power flow problem. By
choosing this cost function, we try to minimize the deviations
of power injections from the setpoint, and have the control

p

j

=

h
p

set
j

� 1
Rj

!

j

i
pj

p

j

from (15)(16) 3. We consider the

following two cases in which the generators and loads have
different control capabilities and hence different [p

j

, p

j

]:

1) All the 10 generators have [p

j

, p

j

] = [p

set
j

(1 �
c), p

set
j

(1 + c)], and all the loads are uncontrollable;
2) Generators 2, 4, 6, 8, 10 (which happen to provide half

of the total generation) have the same bounds as in case
(1). Generators 1, 3, 5, 7, 9 are uncontrollable, and all
the loads have [p

j

, p

j

] = [p

set
j

(1 + c/2), p

set
j

(1� c/2)],
if we suppose p

set
j

 0 for loads j 2 L.
Hence cases (1) and (2) have the same total control capacity
across the network. Case (1) only has generator control while

3Only the load control pj for j 2 L is written since the generator control
pcj for j 2 G takes the same form.

in case (2) the set of generators and the set of loads each
has half of the total control capacity. We select c = 10%,
which implies the total control capacity is about 6 pu. For all
j 2 N , the feedback gain 1/R

j

is selected as 25p

set
j

, which
is a typical value in practice meaning a frequency change
of 0.04 pu (2.4 Hz) causes the change of power injection
from zero all the way to the setpoint. Note that this control
is the same as frequency droop control, which implies that
indeed frequency droop control implicitly solves an OFC
problem with quadratic cost functions we use here. However,
our controller design is more flexible by allowing a larger
set of cost functions.

In the simulation, the system is initially at the setpoint
with 60 Hz frequency. At time t = 0.5 second, buses 4,
15, 16 each makes 1 pu step change in their real power
consumptions, causing the frequency to drop. Fig. 2 shows
the frequencies of all the 10 generators under the two cases
above, (1) with red and (2) with black. We see in both cases
that frequencies of different generators have relatively small
differences during transient, and are synchronized towards
the new steady-state frequency. Compared with generator-
only control, the combined generator-and-load control im-
proves both the transient and steady-state frequency, even
though the total control capacities in both cases are the same.
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Fig. 2. Frequencies of all the 10 generators under case (1) only generators
are controlled (red) and case (2) both generators and loads are controlled
(black). The total control capacities are the same in these two cases.

VI. CONCLUSION AND FUTURE WORK
We have presented a systematic method to jointly design

generator and load-side primary frequency control, by for-
mulating an optimal frequency control (OFC) problem to
characterize the desired equilibrium points of the closed-
loop system. OFC minimizes the total generation cost and
user disutility subject to power balance over entire network.
The proposed control is completely decentralized, depending
only on local frequency. Stability analysis for the closed-
loop system with Lyapunov method has led to a sufficient
condition for any equilibrium point to be asymptotically
stable. A simulation shows that the combined generator-
and-load control improves both transient and steady-state
frequency, compared to the traditional control on generators
only, even when the total control capacity remains the same.
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VII. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
2, to test our scheme. We assume that the system has two
independent control areas that are connected through lines
(1, 2), (2, 3) and (26, 27). The network parameters as well
as the initial stationary point (pre fault state) were obtained
from the Power System Toolbox [41] data set.

Each bus is assumed to have a controllable load with D
i

=

[�d
max

, d
max

], with d
max

= 1p.u. on a 100MVA base and
disutility function
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Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter
D

i

= 0.2 8i 2 N and �v

i

= ⇣�
i
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k

= ⇣⇢
+

e

= ⇣⇢
�

e

= 1,
for all i 2 N , k 2 K and e 2 E . These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing the
mismatch among the load buses. ˆP is obtained from the
starting stationary condition. We initially set ¯P and P so that
they are not binding.

We simulate the OLC-system as well as the swing dynam-
ics (31) without load control (d

i

= 0), after introducing a
perturbation at bus 29 of Pm

29

= �2p.u.. Figures 4 and 5 show
the evolution of the bus frequencies for the uncontrolled swing
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dynamics (a), the OLC system without inter-area constraints
(b), and the OLC with area constraints (c).

It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.
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Now, we illustrate the action of the thermal constraints by
adding a constraint of ¯P

e

= 2.6p.u. and P
e

= �2.6p.u. to
the tie lines between areas. Figure 6 shows the values of
the multipliers �

i

, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and 5c, i.e. without thermal
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We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
2, to test our scheme. We assume that the system has two
independent control areas that are connected through lines
(1, 2), (2, 3) and (26, 27). The network parameters as well
as the initial stationary point (pre fault state) were obtained
from the Power System Toolbox [41] data set.

Each bus is assumed to have a controllable load with D
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Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter
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for all i 2 N , k 2 K and e 2 E . These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing the
mismatch among the load buses. ˆP is obtained from the
starting stationary condition. We initially set ¯P and P so that
they are not binding.

We simulate the OLC-system as well as the swing dynam-
ics (31) without load control (d
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= 0), after introducing a
perturbation at bus 29 of Pm

29

= �2p.u.. Figures 4 and 5 show
the evolution of the bus frequencies for the uncontrolled swing
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dynamics (a), the OLC system without inter-area constraints
(b), and the OLC with area constraints (c).

It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.
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Now, we illustrate the action of the thermal constraints by
adding a constraint of ¯P

e

= 2.6p.u. and P
e

= �2.6p.u. to
the tie lines between areas. Figure 6 shows the values of
the multipliers �

i

, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and 5c, i.e. without thermal
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VII. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
2, to test our scheme. We assume that the system has two
independent control areas that are connected through lines
(1, 2), (2, 3) and (26, 27). The network parameters as well
as the initial stationary point (pre fault state) were obtained
from the Power System Toolbox [41] data set.

Each bus is assumed to have a controllable load with D
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=
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max
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], with d
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= 1p.u. on a 100MVA base and
disutility function
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Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter
D
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= 0.2 8i 2 N and �v
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= ⇣�
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k

= ⇣⇢
+

e
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e

= 1,
for all i 2 N , k 2 K and e 2 E . These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing the
mismatch among the load buses. ˆP is obtained from the
starting stationary condition. We initially set ¯P and P so that
they are not binding.

We simulate the OLC-system as well as the swing dynam-
ics (31) without load control (d

i

= 0), after introducing a
perturbation at bus 29 of Pm

29

= �2p.u.. Figures 4 and 5 show
the evolution of the bus frequencies for the uncontrolled swing
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It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.
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Now, we illustrate the action of the thermal constraints by
adding a constraint of ¯P

e

= 2.6p.u. and P
e

= �2.6p.u. to
the tie lines between areas. Figure 6 shows the values of
the multipliers �

i

, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and 5c, i.e. without thermal
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2, to test our scheme. We assume that the system has two
independent control areas that are connected through lines
(1, 2), (2, 3) and (26, 27). The network parameters as well
as the initial stationary point (pre fault state) were obtained
from the Power System Toolbox [41] data set.
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do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing the
mismatch among the load buses. ˆP is obtained from the
starting stationary condition. We initially set ¯P and P so that
they are not binding.

We simulate the OLC-system as well as the swing dynam-
ics (31) without load control (d
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= 0), after introducing a
perturbation at bus 29 of Pm
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It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.
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Now, we illustrate the action of the thermal constraints by
adding a constraint of ¯P

e

= 2.6p.u. and P
e

= �2.6p.u. to
the tie lines between areas. Figure 6 shows the values of
the multipliers �

i

, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and 5c, i.e. without thermal
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scheme, we can see in Figure 7 that the system converges to
a new operating point that satisfies our constraints.

Finally, we show the conservativeness of the bound obtained
in Theorem 17. We simulate the system (24) and (52) under
the same conditions as in Figure 6. We set B

i

such that the
corresponding �b

i

s are homogeneous for every bus i. We also
do not impose the bounds (63) on d

i

(·) and use instead d
i

as
described in Figure 3. This last assumption actually implies
that the interval in (64) is empty since d0 = 0.
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Figures 8 and 9 show the evolution of the frequency
!
i

and LMPs �
i

for different values of �b
i

belonging to
{�0.4,�0.21,�0.2,�0.19, 0.0}. Since D

i

= 0.2 at all the
buses, then �b

i

= �0.2 is the threshold that makes B
i

go
from positive to negative as �b

i

decreases.

Despite condition (64) is not satisfied for any �b
i

, our
simulations show that the system converges whenever B

i

� 0

(�b
i

� �0.2). The case when �b
i

= �0.2 is of special interest.
Here, the system converges, yet the nominal frequency is not
restored. This is because the terms �b

i

!
i

(53) are equal to
the terms D

i

!
i

in (24a)-(24b). Thus !̇
i

and ˙�
i

can be made
simultaneously zero with nonzero !⇤

i

. Fortunately, this can
only happen when B

i

= 0 which can be avoided since B
i

is
a designed parameter.

VIII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flows and
thermal limits. Our distributed solution converges for every
initial condition and is robust to parameter uncertainty. Several
numerical simulations verify our findings and provide new
insight on the conservativeness of the theoretical sufficient
condition.

Several future directions must be explored to assess the full
potential of this control scheme. Nonlinear versions of the
network as well as additional generator and load dynamics
need to be included in the analysis. A thorough study that con-
siders delays as well as implementations where only a subset
of the network buses implements our controllers needs to be
undertaken in order to assess robustness and the feasibility of
an incremental deployment of the proposed scheme.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 3
Proof: From the derivation of �
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i

) it is easy to show
that
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(·) is strictly convex,
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scheme, we can see in Figure 7 that the system converges to
a new operating point that satisfies our constraints.

Finally, we show the conservativeness of the bound obtained
in Theorem 17. We simulate the system (24) and (52) under
the same conditions as in Figure 6. We set B
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such that the
corresponding �b
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s are homogeneous for every bus i. We also
do not impose the bounds (63) on d
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(·) and use instead d
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described in Figure 3. This last assumption actually implies
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VIII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flows and
thermal limits. Our distributed solution converges for every
initial condition and is robust to parameter uncertainty. Several
numerical simulations verify our findings and provide new
insight on the conservativeness of the theoretical sufficient
condition.

Several future directions must be explored to assess the full
potential of this control scheme. Nonlinear versions of the
network as well as additional generator and load dynamics
need to be included in the analysis. A thorough study that con-
siders delays as well as implementations where only a subset
of the network buses implements our controllers needs to be
undertaken in order to assess robustness and the feasibility of
an incremental deployment of the proposed scheme.
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The name of the dynamic law (27) comes from the fact that
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫
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. Therefore, we can interpret the frequency !
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the Lagrange multiplier ⌫
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This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
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!̇G = M�1

G (Pm

G � (dG +

ˆdG)� CGP ) (31a)

0 = Pm

L � (dL +

ˆdL)� CLP (31b)
˙P = D

B

CT! (31c)
ˆd = D! (31d)

and
Dynamic Load Control:

˙� = ⇣� (Pm � d� L
B

v) (32a)

⇡̇ = ⇣⇡
Ä
ˆCD

B

CT v � ˆP
ä

(32b)

⇢̇+ = ⇣⇢
+

⇥
D

B

CT v � ¯P
⇤
+

⇢

+

(32c)

⇢̇� = ⇣⇢
� ⇥

P �D
B

CT v
⇤
+

⇢

� (32d)

v̇ = �v

Ä
L
B

�� CD
B

ˆCT⇡ � CD
B

(⇢+ � ⇢�)
ä

(32e)

d = c0
�1

(! + �) (32f)

Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
i

+ !
i

).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �

i

one needs to estimate
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when one measure the power injection of a given
bus without knowing D

i

. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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             P ≤ BCTv ≤ P

restore nominal freq 

demand = supply 

min
d,P

      ci (di
i
∑ )

s. t.      Pi
m − di = Cie

e
∑ Pe     node i

           Cie
e
∑

i∈Nk

∑ Pe  = P̂k       area k

           Pe  ≤  Pe  ≤  Pe         line e



OLC for secondary control 

min
d,d̂,P,v

      ci di( )+  1
2Di

d̂i
2

!

"
#

$

%
&

i
∑

s. t.        Pm − (d +  d̂) = CP
             Pm −   d         = CBCTv

                     ĈBCTv = P̂
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                 P ≤ BCTv ≤ P

restore nominal freq 

in steady state:  
     virtual flow = real flows 

BCTv = P

restore inter-area flow 

respect line limit 

demand = supply 



swing dynamics:   

Recall: primary control 

ωi = −
1
Mi

di (t)+Diωi (t)−Pi
m + CiePe(t)

e∈E
∑

$

%
&

'

(
)

Pij = bij ωi (t)−ω j (t)( )         

load control: di (t) := ci
'−1 ωi (t)( )"# $%di

di active  
control 

implicit  

6

The name of the dynamic law (27) comes from the fact that

@

@⌫
L(x,�)T = Pm � (d(�

i

) +D⌫)� CP (30a)

@

@�
L(x,�)T = Pm � d(�)� L

B

v (30b)

@

@⇡
L(x,�)T =

ˆCD
B

CT v � ˆP (30c)

@

@⇢+
L(x,�)T = D

B

CT v � ¯P (30d)

@

@⇢�
L(x,�)T = P �D

B

CT v (30e)

@

@P
L(x,�)T = �(CT ⌫) (30f)

@

@v
L(x,�)T = �(L

B

�� CD
B

ˆCT⇡ � CD
B

(⇢+ � ⇢�))

(30g)

Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫

i

= M�1

i

and
�P

ij

= B
ij

. Therefore, we can interpret the frequency !
i

as
the Lagrange multiplier ⌫

i

.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:

!̇G = M�1

G (Pm

G � (dG +

ˆdG)� CGP ) (31a)

0 = Pm

L � (dL +

ˆdL)� CLP (31b)
˙P = D

B

CT! (31c)
ˆd = D! (31d)

and
Dynamic Load Control:

˙� = ⇣� (Pm � d� L
B

v) (32a)

⇡̇ = ⇣⇡
Ä
ˆCD

B

CT v � ˆP
ä

(32b)

⇢̇+ = ⇣⇢
+

⇥
D

B

CT v � ¯P
⇤
+

⇢

+

(32c)

⇢̇� = ⇣⇢
� ⇥

P �D
B

CT v
⇤
+

⇢

� (32d)

v̇ = �v

Ä
L
B

�� CD
B

ˆCT⇡ � CD
B

(⇢+ � ⇢�)
ä

(32e)

d = c0
�1

(! + �) (32f)

Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
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V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
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(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
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Proof: The proof of this theorem is a direct application
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primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
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controller design archtecture [36], our dynamic load control
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V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
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We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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Secondary frequency control 

load control: di (t) := ci
'−1 ωi (t)+λi (t)( )"# $%di

di

computation & communication: 
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫

i

= M�1

i

and
�P

ij

= B
ij

. Therefore, we can interpret the frequency !
i

as
the Lagrange multiplier ⌫

i

.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:
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Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
i

+ !
i

).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �

i

one needs to estimate
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0
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Fig. 1: Control architecture derived from OLC
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which is not easy since one cannot separate Pm
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i

�D
i

!
i

when one measure the power injection of a given
bus without knowing D

i

. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫

i

= M�1

i

and
�P

ij

= B
ij

. Therefore, we can interpret the frequency !
i

as
the Lagrange multiplier ⌫

i

.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:

!̇G = M�1

G (Pm

G � (dG +

ˆdG)� CGP ) (31a)

0 = Pm

L � (dL +
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Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
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).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �
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one needs to estimate
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Fig. 1: Control architecture derived from OLC
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when one measure the power injection of a given
bus without knowing D
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. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.

Similarly, since !̇
i

= 0, ˙�
i

= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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Theorem 
 

starting from any initial point, system  
trajectory converges   s. t. 
 

n                     is unique optimal of OLC 
 

n  nominal frequency is restored 

n  inter-area flows are restored 

n  line limits are respected 

Secondary control works 

d*,  d̂*,P*,v*( )
ω* = 0

ĈP*  = P̂
P ≤ P* ≤ P



Design optimal load control (OLC) problem 
n  Objective function, constraints 

Derive control law as primal-dual algorithms 
n  Lyapunov stability 
n  Achieve original control goals in equilibrium 

Distributed algorithms 

Recap: key ideas 

primary control: 

di (t) := ci
'−1 ωi (t)+λi (t)( )

di (t) := ci
'−1 ωi (t)( )

secondary control: 



Design optimal load control (OLC) problem 
n  Objective function, constraints 

Derive control law as primal-dual algorithms 
n  Lyapunov stability 
n  Achieve original control goals in equilibrium 

Distributed algorithms 
 

Virtual flows 
n  Enforce desired properties on line flows 

Recap: key ideas 

in steady state:  virtual flow = real flows 
BCTv = P



n  Rebalance power 
n  Resynchronize/stabilize frequency 
 
n  Restore nominal frequency 
n  Restore scheduled inter-area flows 
n  Respect line limits 

 

Recap: control goals 
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ω* ≠ 0( )

Secondary control restores nominal  
frequency but requires local communication 
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Mallada, et al Allerton2014 

Zhao, et al TAC2014 

Yes 



Outline 

 
 

Load-side frequency control 
n  Primary control  
n  Secondary control 
n  Interaction with generator-side control 

 

 
Zhao and Low, CDC2014 

Zhao, Mallada, Low, CISS 2015 
Zhao, Mallada, Low, Bialek, PSCC 2016 



Generator-side control 

Recall model: linearized PF, no generator control 
Mi !ωi  = −Diωi +Pi

m − di − CieP e
e
∑

     !Pij = bij ωi −ω j( )               ∀ i→ j

New model: nonlinear PF, with generator control  

     !θi =ωi

Mi !ωi  = −Diωi + pi − CieP e
e
∑

     Pij = bij sin θi −θ j( )               ∀ i→ j



Generator-side control 

generator bus:  real power injection 
load bus:    controllable load 

New model: nonlinear PF, with generator control  

     !θi =ωi

Mi !ωi  = −Diωi + pi − CieP e
e
∑

     Pij = bij sin θi −θ j( )               ∀ i→ j



Generator-side control 
New model: nonlinear PF, with generator control  

!pi = −
1
τ bi

pi + ai( )

!ai = −
1
τ gi

ai + pi
c( )

generator buses:  

primary control  pi
c (t) = pi

c ωi (t)( )
e.g. freq droop  pi

c ωi( ) = −βiωi

     !θi =ωi

Mi !ωi  = −Diωi + pi − CieP e
e
∑

     Pij = bij sin θi −θ j( )               ∀ i→ j
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The name of the dynamic law (27) comes from the fact that
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Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ⇣⌫
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= M�1
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and
�P

ij

= B
ij

. Therefore, we can interpret the frequency !
i

as
the Lagrange multiplier ⌫
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.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:
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Equations (31) and (32) show how the network dynamics
can be complemented with dynamic load control such that the
whole system amounts to a distributed primal-dual algorithm
that tries to find a saddle point on L(x,�). We will show in
the next section that this system does achieve optimality as
intended.

Figure 1 also shows the unusual control architecture derived
from our OLC problem. Unlike traditional observer-based
controller design archtecture [36], our dynamic load control
block does not try to estimate state of the network. Instead,
it drives the network towards the desired state using a shared
static feedback loop, i.e. d

i

(�
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+ !
i

).

Remark 5. One of the limitations of (32) is that in order
to generate the Lagrange multipliers �
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one needs to estimate
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Fig. 1: Control architecture derived from OLC
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when one measure the power injection of a given
bus without knowing D

i

. This problem will be addressed in
Section VI where we propose a modified control scheme that
can achieve the same equilibrium without needing to know D

i

exactly.

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (31)-(32) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (31)-(32) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), ˆd

i

(t), P (t), v(t),!(t),�(t),⇡(t), ⇢+(t), ⇢�(t))
converges to an equilibrium point of (31)-(32). Moreover, the
equilibrium point will satisfy (2) and (5).

Theorem 6 (Optimality). A point p⇤ = (d⇤, ˆd⇤, x⇤,�⇤
) is an

equilibrium point of (31)-(32) if and only if is a primal-dual
optimal solution to the OLC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d⇤, ˆd⇤, x⇤,�⇤

) be an equilibrium point of
(31)-(32). Then, by (31c) and (32c)-(32e), �⇤ is dual feasible.
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= 0, ⇡̇
k

= 0, ⇢̇+
ij

= 0 and
⇢̇�
ij

= 0, then (31a)-(31b) and (32a)-(32d) are equivalent to
primal feasibility, i.e. (d⇤, ˆd⇤, P ⇤, v⇤) is a feasible point of (9).
Finally, by definition of (31)-(32) conditions (21) and (22) are
always satisfied by any equilibrium point. Thus we are under
the conditions of Lemma 4 and therefore p⇤ = (d⇤, ˆd⇤, x⇤,�⇤

)

is primal-dual optimal which also implies that !⇤
= 0.

Remark 7. Theorem 6 implies that every equilibrium solution
of (31)-(32) is optimal with respect to OLC. However, it
guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0),!(0),�(0),⇡(0),
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Theorem 

o  Every closed-loop equilibrium solves 
OLC and its dual 

 
 

Load-side primary control works 

θi
* −θ j

* <
π
2

 

Suppose  

 
o  Any closed-loop equilibrium is (locally) 

asymptotically stable provided 

pi
c ω( )− pic ω*( ) ≤ Li ω −ω*

near ω*  for some Li < Di



Forward-engineering design facilitates 
n  explicit control goals 
n  distributed algorithms 
n  stability analysis 

Load-side frequency regulation 
n  primary & secondary control works 
n  helps generator-side control 

Conclusion 


